2-Substituted Tryptamines: Agents with Selectivity for 5-HT₆ Serotonin Receptors^{II}

Richard A. Glennon,^{*,†} Mase Lee,[†] Jagadeesh B. Rangisetty,[†] Malgorzata Dukat,[†] Bryan L. Roth,[‡] Jason E. Savage,[‡] Ace McBride,[‡] Laura Rauser,[‡] Sandy Hufeisen,[‡] and David K. H. Lee[§]

Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, Departments of Biochemistry, Psychiatry, and Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, and Allelix Biopharmaceuticals, Mississauga, Ontario L4V 1V7, Canada

Received November 4, 1999

Several 2-alkyl-5-methoxytryptamine analogues were designed and prepared as potential 5-HT₆ serotonin agonists. It was found that 5-HT₆ receptors accommodate small alkyl substituents at the indole 2-position and that the resulting compounds can bind with affinities comparable to that of serotonin. In particular, 2-ethyl-5-methoxy-*N*,*N*-dimethyltryptamine (**8**) binds with high affinity at human 5-HT₆ receptors ($K_i = 16$ nM) relative to 5-HT ($K_i = 75$ nM) and was a full agonist, at least as potent (**8**: $K_{act} = 3.6$ nM) as serotonin ($K_{act} = 5.0$ nM), in activating adenylate cyclase. Compound **8** displays modest affinity for several other populations of 5-HT receptors, notably h5-HT_{1A} ($K_i = 170$ nM), h5-HT_{1D} ($K_i = 290$ nM), and h5-HT₇ ($K_i = 300$ nM) receptors, but is otherwise quite selective. Compound **8** represents the first and most selective 5-HT₆ agonist reported to date. Replacing the 2-ethyl substituent with a phenyl group results in a compound that retains 5-HT₆ receptor affinity (i.e., **10**: $K_i = 20$ nM) but lacks agonist character. 2-Substituted tryptamines, then, might allow entry to a novel class of 5-HT₆ agonists and antagonists.

Introduction

Serotonin (5-hydroxytryptamine, 5-HT; 1a) receptors are classified as belonging to one of several different families: 5-HT₁–5-HT₇. One of the newest populations identified are the 5-HT₆ receptors.¹ 5-HT₆ serotonin receptors are members of the G-protein superfamily, are positively coupled to an adenylate cyclase secondmessenger system, and are found primarily in the central nervous system.² The exact clinical significance of 5-HT₆ receptors is unknown at this time. Of interest, however, is that a number of typical and atypical antipsychotic agents and tricyclic antidepressants bind with high affinity at 5-HT₆ receptors (i.e., with K_i values of <100 nM).³⁻⁵ In rats prevented from expressing 5-HT₆ receptors, the animals behave in a manner that seems to involve an increase in cholinergic function; this has led to speculation that one of the roles of 5-HT₆ receptors may be to control cholinergic neurotransmission and that 5-HT₆-selective antagonists could be useful in the treatment of anxiety and memory deficits.^{6,7} It has been further suggested that GABAcontaining neurons in the striatum and glutamatecontaining neurons in the hippocampus could be targets of 5-HT actions mediated by 5-HT₆ receptors.⁸ 5-HT₆ ligands might thus be of value in the treatment of anxiety and related disorders. Other studies suggest that 5-HT₆ receptors might be involved in motor function, mood-dependent behavior, and early growth processes involving serotonin. $^{9-11}\,$

Ro 04-6790 (**2a**) and Ro 63-0563 (**2b**) represent the first 5-HT₆-selective antagonists.¹² Several related structures have also been reported including SB-271046 (**3**, R = H).¹³ Repeated intracerebroventricular administration of antisense oligonucleotides to rats to prevent expression of 5-HT₆ receptors produces a behavioral syndrome that consists of yawning, stretching, and chewing;^{6,7} administration of Ro 04-6790 and Ro 63-0563 to naive animals produced a similar effect.¹² [³H]Ro 63-0563 has been developed as a radioligand for binding studies.^{12b}

No 5-HT₆ -selective agonists have yet been identified. Various indolealkylamines, including the tryptamines

10.1021/jm990550b CCC: \$19.00 © 2000 American Chemical Society Published on Web 02/11/2000

^{II} Presented in part at the Virginia Academy of Science Meeting, Norfolk, VA, May 25–28, 1999.

^{*} Correspondence to: Richard A. Glennon, Ph.D., Box 980540, Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298-0540, Phone: 804-828-8487. Fax: 804-929.7404 Emerilie chemistry and the solution of the

^{828-7404.} E-mail: glennon@hsc.vcu.edu. † Virginia Commonwealth University.

[‡] Case Western Reserve University.

[§] Allelix Biopharmaceuticals.

Scheme 1^a

^{*a*} (a) i. *n*BuLi, THF, -78 °C, ii. CO₂, iii. *t*BuLi, THF, -78 °C, iv. MeI; (b) Me₂N-CH₂CH₂-NO₂, CF₃COOH; (c) LiAlH₄, THF, Δ ; (d) NaBH₃CN, 37% CH₂O, MeCN, HOAc.

5-HT (**1a**) and 5-methoxytryptamine (**1b**), and ergolines, such as (+)lysergic acid diethylamide (LSD) and lisuride, bind with high affinity. In fact, [¹²⁵I]iodo-LSD and [³H]LSD have been used to label 5-HT₆ receptors. The purpose of our present study was to identify potential agonists with enhanced selectivity for 5-HT₆ receptors that might be useful for investigating this population of receptors and receptor function.

5-HT and 5-methoxytryptamine have been demonstrated to act as 5-HT₆ agonists and produce a potent dose-dependent increase in cAMP levels.¹⁴ Unfortunately, these tryptamines are notoriously nonselective and bind at multiple populations of 5-HT receptors.¹⁵ It has been demonstrated, however, that with appropriate molecular modification tryptamine derivatives can be developed that display enhanced selectivity for different populations of 5-HT receptors.¹⁵

We began our investigation by exploring the structureaffinity relationships for the binding of tryptamines at 5-HT₆ receptors.¹⁶ We found that O-methylation of 5-HT (1a: $K_i = 75$ nM) to 5-methoxytryptamine (1b: $K_i = 88$ nM) had little effect on affinity and that removal of the hydroxyl group to give tryptamine (**1c:** $K_i = 180$ nM) only halved affinity.¹⁶ Most other changes led to significant decreases in affinity. For example, lengthening the alkyl chain by one methylene unit, conformational restriction of the side chain as a 1,2,3,4-tetrahydropyrido[3,4-b]indole, replacement of the indolic nitrogen atom with an sp³-hybridized carbon atom, and quaternization of the terminal amine all resulted in a dramatic reduction in affinity (i.e., $K_i > 5000$ nM). On the other hand, N-monomethylation and N,N-dimethylation resulted in retention or a slight increase in affinity. More importantly, we found that introduction of a 2-methyl substituent was tolerated. That is, 2-methyl 5-HT (4: $K_{\rm i} = 46$ nM) possessed an affinity at least comparable to that of 5-HT itself. This is particularly noteworthy because, with the exception of 5-HT₃ receptors, 2-methyl substitution is generally thought to reduce the affinity of tryptamines for most populations of 5-HT receptors. Indeed, 2-methyl 5-HT (4) is currently considered a 5-HT₃-selective ligand. Interestingly, we have now demonstrated that 2-methyl 5-HT binds at 5-HT₆ receptors ($K_i = 46$ nM) with much higher affinity than it displays for 5-HT₃ receptors ($K_i = 1200$ nM).¹⁶ Given that 2-methylation of 5-HT is tolerated by 5-HT₆ receptors and because 2-methyl 5-HT has been previously considered a 5-HT₃-selective agent, this seemed to be a suitable starting point for the exploration of potentially selective 5-HT₆ agents.

Chemistry

The 2-methyl derivative **7** was prepared via a literature procedure¹⁷ from 2-methylindole using the Speeter— Anthony method, and the 2-ethyl homologue **8** was prepared by treatment of the free base of **7** with *t*BuLi followed by the addition of MeI (Scheme 1). The 2-phenyl derivative **10** was prepared from 5-methoxy-2-phenylindole as shown in Scheme 1. Reaction of 5-methoxy-2-phenylindole with *N*,*N*-dimethylamino-2-nitroethylene afforded the nitrovinyl derivative **22**; compound **22** was reduced to amine **23** using LiAlH₄, and the amine was reductively methylated with formaldehyde and sodium cyanoborohydride.

Many of the 5-methoxy-substituted tryptamines were prepared from 5-methoxy-N,N-dimethyltryptamine (free base of 11) (Scheme 2). Direct alkylation of 11 (free base) under basic conditions with the appropriate alkyl halide provided the N_1 -substituted derivatives 12–15. The procedure is exemplified for compound 15. The 2-npropyl homologue 9 was also obtained from 11 (Scheme 2). The N₁-position of **11** (free base) was protected with a benzenesulfonyl group, and the resulting compound, 18, was treated with *n*PrI to give 19; hydrolysis of the protecting group provided compound 9. Reaction of the indolyl anion of **11** (free base) with anhydrous γ -butyrolactone afforded the N-butyrate 20. Attempts to cyclize 20 using PPA at 100 °C were unsuccessful and resulted in decomposition; however, substitution of PPE¹⁸ for PPA gave the desired **21**, which was reduced with borane to give the desired 16 (Scheme 2). Compound 17 was synthesized via debenzylation of its known N-benzyl derivative.¹⁹

Results and Discussion

2-Methyl 5-HT (**4**) is currently considered a 5-HT₃selective ligand; on the other hand, it is known that 5-HT₃ receptors do not readily accommodate a tryptamine 5-methoxy group. For example, 5-methoxytryptamine (**1b**), the *O*-methyl ether of 5-HT (**1a**), is completely devoid of activity at 5-HT₃ receptors.²⁰ Hence, the first compound that we examined was the simple 2-methyl

Scheme 2^a

^{*a*} (a) NaH, DMF, rt, and Me₂SO₄, EtBr, *n*PrCl or *i*PrCl; (b) NaH, DMF, PhSO₂Cl, rt; (c) BuLi, DME, *n*PrI, -10 °C; (d) Mg, MeOH, rt; (e) γ -butyrolactone; (f) PPE, CHCl₃, reflux; (g) B₂H₆/THF, rt.

Table 1. Physicochemical Properties and 5-HT₆ Receptor Affinities of Tryptamine Analogues

			• •
			R R
_		Г	
R5 🔪	$\langle \rangle$	$ \land $	—R ₂
	\checkmark	∕_Ń R1	

compd	R	R_5	R_2	R_1	yield (%)	RS ^a	mp (°C)	5-HT ₆ affinity ^b K_i (nM)	empirical formula ^c
4	Н	OH	CH ₃	Н				46 ^f	
5	Η	OCH_3	CH_3	Н				98	
6	CH_3	Н	CH_3	Н	88	EtOH-Et ₂ O	208	300	C ₁₃ H ₁₈ N ₂ ·HCl
7	CH_3	OCH_3	CH_3	Н	92	А	242-245 dec	80	$C_{14}H_{20}N_2O \cdot C_2H_2O_4$
8 (EMDT)	CH_3	OCH_3	C_2H_5	Н	16	B-Et ₂ O	123	52	$C_{15}H_{22}N_2O \cdot C_4H_4O_4$
9	CH_3	OCH_3	nC_3H_7	Н	45	А	146 - 147	185	$C_{16}H_{24}N_2O \cdot C_2H_2O_4^d$
10	CH_3	OCH_3	C_6H_6	Н	25	А	187-188	54	$C_{19}H_{22}N_2O \cdot C_2H_2O_4$
11	CH_3	OCH_3	Н	Н				78	
12	CH_3	OCH_3	Н	CH_3	65	А	181-182	510	$C_{14}H_{20}N_2O \cdot C_2H_2O_4$
13	CH_3	OCH_3	Н	C_2H_5	22	А	160 - 161	240	$C_{15}H_{22}N_2O \cdot 1.5C_2H_2O_4$
14	CH_3	OCH_3	Н	nC_3H_7	93	A-Et ₂ O	104	200	$C_{16}H_{24}N_2O \cdot C_4H_4O_4$
15	CH_3	OCH_3	Н	iC_3H_7	49	A-Et ₂ O	101	130	$C_{16}H_{24}N_2O \cdot C_4H_4O_4$
16	CH_3	OCH_3	$-CH_2CH$	$I_2CH_2CH_2 -$	75	А	114 - 115	1030	$C_{17}H_{24}N_2O \cdot 1.15C_2H_2O_4^e$
17					37	EtOH-Et ₂ O	224 - 226	168	$C_{16}H_{22}N_2O \cdot C_2H_2O_4$

^{*a*} Recrystallization solvents: EtOH represents absolute ethanol; Et₂O, anhydrous ether; A, acetone; B, ethyl acetate. ^{*b*} K_i values represent replicate determinations and SEM are $\pm 25\%$; for purpose of comparison, clozapine was determined to possess a $K_i = 5.3 (\pm 0.4)$ nM. ^{*c*} All compounds analyzed correctly to within 0.4% of theory for C, H, and N except where noted. ^{*d*} Crystallized with 0.7 mol of H₂O. ^{*e*} Crystallized with 1 mol of H₂O. ^{*f*} K_i value previously reported;¹⁶ included for purpose of comparison.

analogue of 5-methoxytryptamine (**1b**: $K_i = 88 \text{ nM}$),¹⁶ namely, 5-methoxy-2-methyltryptamine (**5**). Compound **5** ($K_i = 98 \text{ nM}$; Table 1) was found to bind at 5-HT₆ receptors with an affinity comparable to that of 5-methoxytryptamine. It was also found that **5** lacks affinity for 5-HT₃ receptors ($K_i > 10000 \text{ nM}$). Compound **5** might

be a useful 5- HT_6 ligand; however, given that 5 possesses a primary amine, its utility for future in vivo studies might be hampered by its reduced ability to penetrate the blood-brain barrier and/or due to its potential for rapid metabolism by oxidative deamination. To address these problems, we sought to prepare

Tab	le 2	2.	Bind	ing	Profile	of	Compou	ınds	7,	8,	and	10 ^a
-----	------	----	------	-----	---------	----	--------	------	----	----	-----	------------------------

	$K_{\rm i}$, nM (\pm SEM)							
receptor population	7	8 (EMDT)	10	control (agent and K_i)				
NET	6380 (±3190)	>10000	>10000	nortriptyline 6.3 ± 1.2				
SERT	>10000	>10000	4700 (±1550)	fluoxetine 3.5 ± 0.7				
h5-HT _{1A}	200 (±60)	170 (±54)	1470 (±310)	WAY 100,635 0.6 \pm 1.5				
h5-HT _{1D}	250 (±180)	290 (±70)	6225 (±70)	ergotamine 0.8 ± 0.6				
$h5-HT_{1E}$	1800 (±600)	520 (±180)	>10000	serotonin 0.5 ± 0.15				
$r5-HT_{2A}$	>10000	>10000	470 (±10)	clozapine 9 \pm 1				
$r5-HT_{2C}$	4020 (±640)	1810 (±490)	675 (±180)	clozapine 23 ± 5				
h5-HT _{5A}	10450 (±2195)	4620 (±650)	5160 (±930)	ergotamine 22 ± 3				
h5-HT7	145 (±34)	300 (±60)	155 (±35)	clozapine 9 ± 2				
$h5-HT_6$	60 (13)	16 (±4)	20 (±5)	clozapine 10 ± 3				

^{*a*} Compounds displayed K_i values of >10000 nM at the following populations of receptors: histamine, NMDA, PCP, acetylcholine, opiate, and vasopressin receptors; see Experimental Section for specific subpopulations examined. K_i values were >10000 nM for compounds 7 and 8 at hD₁, rD₂, rD₃, rD₄, and hD₅ receptors and >10000 nM for **10** at hD₁, rD₂, and rD₄ receptors; although **10** produced 70% inhibition at 10000 nM at rD₃ and hD₅ receptors, it was not further evaluated. NET and SERT represent the norepinephrine and serotonin transporters. K_i values for all three compounds at the dopamine transporter were >10000 nM.

several related derivatives that were somewhat more lipophilic and/or that might be less prone to metabolism.

One approach to enhancing lipophilicity and hindering metabolism was to add N,N-dimethyl substituents to the terminal amine; a second approach to enhancing lipophilicity was to homologate the 2-position substituent. 2-Methyl-N,N-dimethyltryptamine (2-methyl DMT, **6**: $K_i = 300$ nM), an *N*,*N*-dimethyl analogue of **5** lacking the 5-methoxy group, binds with severalfold lower affinity than 5 itself. Reintroduction of the 5-methoxy group, affording 2-methyl-5-methoxy DMT (7: $K_i = 80$ nM), enhanced affinity. Homologation of the 2-methyl substituent to an ethyl group (i.e., 8: $K_i = 52$ nM) resulted in a slight increase in affinity and in a compound with affinity at least comparable to that of 5-HT itself. Further homologation of the ethyl substituent to a 2-npropyl group (i.e., **9**: $K_i = 185$ nM) reversed this trend. To explore the possibility of bulk tolerance, we examined the 2-phenyl derivative **10** ($K_i = 54$ nM) and found it to bind with an affinity comparable to that of 8.

Another attempt to enhance lipophilicity was to incorporate small alkyl substituents at the indole N1position. The idea was to subsequently incorporate a 2-alkyl substituent into whatever N1-substituted analogue retained high 5-HT₆ receptor affinity. N₁-Methylation of 5-methoxy DMT (**11**: $K_i = 78$ nM) decreased 5-HT₆ receptor affinity of the resulting compound by >6fold (**12**: $K_i = 510$ nM). Homologation of the N_1 -methyl group to an ethyl group (i.e., 13: $K_i = 240$ nM) or *n*-propyl group (i.e., **14**: $K_i = 200$ nM) doubled affinity, but the compounds did not bind as well as 11. Branching of **13** to the isopropyl derivative **15** ($K_i = 130$ nM) resulted in a further slight enhancement of affinity. However, none of these compounds displayed significantly enhanced affinity. Compound **16** ($K_i = 1030$ nM), which may be viewed as a cyclic 1,2-disubstituted analogue of 11, was also prepared for evaluation and was found to bind with reduced affinity.

In a final attempt to enhance lipophilicity in the 2-substituted DMT series, the propyl group of **9** was tethered to the DMT side chain to afford **17**; compound **17** ($K_i = 168$ nM) was found to bind at 5-HT₆ receptors with about 3-fold lower affinity than **8**. Although compound **17** possesses an asymmetric center and can exist as a pair of optical isomers, no attempt was made to examine the individual isomers because structurally related agents have been shown to bind at 5-HT_{1D} receptors,^{21,22} and it was anticipated that the isomers of **17** might lack the desired selectivity.

Binding Profile. Compounds 7, 8, and 10 were selected for examination of detailed binding profiles. All three agents were examined at more than 30 different receptor populations and produced <50% inhibition of binding at a concentration of 10000 nM at most of these populations. Where >50% displacement was observed, K_i values were determined (Table 2). For these studies, K_i values were redetermined for 7, 8, and 10. Compounds 8 and 10 bind at human 5-HT₆ receptors with comparable affinity ($K_i = 16$ and 20 nM, respectively) and with an affinity similar to that of clozapine; compound **7** binds with several fold lower affinity ($K_i =$ 60 nM). Although 7 and 8 appear relatively selective, they also bind at h5-HT_{1A}, h5-HT_{1D}, h5-HT_{1E}, and h5-HT7 receptors, yet compound 8, in particular, still displays 10-fold selectivity over 5-HT_{1A} receptors and nearly 20-fold selectivity over h5-HT_{1D} and h5-HT₇ receptors. Compound 10 is more selective and displays 735-fold selectivity over $h5-HT_{1A}$ receptors and >300fold selectivity over h5-HT_{1D} receptors.

Functional Studies. Compounds **7**, **8**, and **10** were examined for their ability to activate adenylate cyclase. Whereas compounds **7** and **8** behaved as full agonists ($K_{act} = 7.9 \pm 5.0$ and 3.6 ± 1.3 nM, respectively) relative to 5-HT ($K_{act} = 5.0 \pm 3.0$ nM), compound **10** showed no agonist activity (see Figure 1). Compound **10** inhibited 5-HT-stimulated adenylate cyclase at 10000 nM suggesting that it is an antagonist.

Summary

Molecular manipulation of a tryptamine template revealed that 2-methyl substitution was tolerated by 5-HT₆ receptors.¹⁶ Because 2-methyl 5-HT was previously considered to be a 5-HT₃-selective ligand and by taking advantage of the fact that 5-HT₃ receptors do not readily accommodate a 5-methoxy group, a series of

Figure 1. Typical dose–response curves for the effects of compounds **7**, **8**, and **10** as 5-HT₆ agonists in an adenylate cyclase assay; serotonin was used as control. Each compound was examined at five concentrations.

2-alkyl-5-methoxytryptamines was synthesized for evaluation at 5-HT₆ receptors. Several compounds were identified with affinities at least comparable to that of 5-HT itself ($K_i = 75$ nM). In particular, 2-ethyl-5methoxy-N,N-dimethyltryptamine (EMDT; 8) possessed high affinity ($K_i = 16$ nM) and displayed reasonable selectivity for 5-HT₆ versus other receptors examined. In functional studies, EMDT (8) was demonstrated to behave as a 5-HT₆ agonist ($K_{act} = 3.6$ nM) with a potency at least equivalent to that of 5-HT ($K_{act} = 5.0$ nM). EMDT is the most selective 5-HT₆ agonist reported to date. Also of interest is the 2-phenyl derivative 10 (MPDT: $K_i = 20$ nM), which possesses a somewhat different binding profile than 8; compound 10 lacks agonist activity up to concentrations of 10000 nM and may represent a novel 5-HT₆ antagonist. Indeed, when examined at the single concentration of 10000 nM, 10 behaved an antagonist. Hence, with the appropriate substituents, 2-substituted tryptamines may provide entry to new 5-HT₆-selective agonists and antagonists.

Experimental Section

Synthesis. Melting points, determined with a Thomas-Hoover melting point apparatus, are uncorrected. Proton magnetic resonance spectra were obtained with a GE QE-300 or Varian Gemini 300 spectrometer; and tetramethylsilane was used as an internal standard. Infrared spectra were recorded on a Nicolet 5ZDX FT-IR. Elemental analysis was performed by Atlantic Microlab Inc. and determined values are within 0.4% of theory. Flash chromatography was performed on silica gel (Merck grade 60, 230-400 mesh 60 Å). Certain compounds were previously reported in the literature but due to difficulty in either preparing or purifying the reported salt, a different salt was prepared. Specifically, compounds 7,17 10,23 and 1224 are known as their HCl salts but were isolated as their monooxalate salts in the present investigation. Compound 6, prepared earlier as a maleate salt,²⁵ was isolated as its HCl salt. All four of these compounds analyzed correctly for C, H, and N.

2-Ethyl-5-methoxy-*N***,***N***-dimethyltryptamine Maleate** (8). A 2.5 M solution of *n*BuLi (1.75 mL, 4.38 mmol) was added in a dropwise manner to a stirred solution of 7^{17} (free base) (1.00 g, 4.33 mmol) in dry THF (7 mL) at -78 °C under N₂. After stirring the reaction mixture for 5 min, the cooling bath was removed and CO₂ gas was passed into the solution for 10 min. The solvent was removed at 0 °C under reduced pressure to give a transparent solid. The flask was flushed with N2 and dry THF (7 mL) was added. The reaction mixture was degassed at -150 °C under reduced pressure of 1 mmHg, then allowed to warm to -78 °C; 1.7 M tBuLi (2.8 mL, 4.8 mmol) was added to give a bright yellow solution. The cooling bath was replaced by an ice-salt bath and the reaction was kept at -20 °C for 45 min, then cooled to -78 °C, and MeI (0.3 mL, 4.81 mmol) was added in a dropwise manner. The solution was kept at -78°C for 3 h. The reaction mixture was acidified with a saturated ethereal solution of HCl. Anhydrous Et₂O was added to the resulting suspension and the supernatant was decanted. The residue was heated at 100 °C under reduced pressure for 20 min. The resulting residue was purified by flash chromatography on silica gel (CH₂Cl₂/MeOH; 12:1) to give 0.17 g of a bright yellow oil (16%): ¹H NMR (CDCl₃) δ 8.06 (s, 1H), 7.14 (d, 1H, J = 8.67 Hz), 6.98 (s, 1H), 6.76 (dd, 1H, J = 2.34, 8.73 Hz), 3.84 (s, 3H), 2.91–2.87 (m, 2H), 2.71 (q, 2H, J=7.38 Hz), 2.57-2.52 (m, 2H), 2.38 (s, 6H), 1.25 (t, 3H, J = 7.38 Hz). The maleate salt was prepared and recrystallized from an EtOAc/Et₂O mixture: mp 123 °C. Anal. ($C_{15}H_{22}N_2O \cdot C_4H_4O_4$) C, H, N.

5-Methoxy-2-n-propyl-N,N-dimethyltryptamine Oxalate (9). Magnesium turnings (840 mg) and NH₄Cl (77 mg, 1.44 mmol) were added to a solution of **19** (free base) (259 mg. 0.65 mmol) in MeOH (17 mL) and the mixture was allowed to stir at room temperature for 1 h. Saturated NH₄Cl solution was added and the reaction mixture was extracted with CH2-Cl₂. The organic portion was dried (MgSO₄) and the solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel (CH₂Cl₂/MeOH; 9:1) to give 75 mg (45%) of a bright yellow oil: ¹H NMR (CDCl₃) δ 7.71 (brs, 1H), 7.16 (d, 1H, J = 8.67 Hz), 6.99 (d, 1H, J = 2.43 Hz), 6.77 (dd, 1H, J = 2.25, 8.73 Hz), 3.85 (s, 3H), 2.89-2.83 (m, 2H), 2.69 (t, 2H, J = 7.56 Hz), 2.53-2.47 (m, 2H), 2.36 (s, 6H), 1.68 (tq, 2 H, J = 7.28, 7.56 Hz), 0.98 (t, 3H, J = 7.28Hz). The oxalate salt was prepared and recrystallized from acetone: mp 146-147 °C. Anal. (C16H24N2O·C2H2O4·0.7H2O) C, H, N.

5-Methoxy-2-phenyl-N,N-dimethyltryptamine Oxalate (10). 5-Methoxy-2-phenylindole²⁶ (3 g, 13.44 mmol) was added to a stirred ice-cooled solution of 1-dimethylamino-2-nitroethylene (1.56, 13.44 mmol) in trifluoroacetic acid (8 mL). The resulting mixture was allowed to stir under N2 at room temperature for 30 min and was then poured into ice/water. The solution was extracted with EtOAc and the organic portion was washed consecutively with saturated NaHCO₃ solution, H₂O, then brine. The organic portion was dried (MgSO₄) and solvent was removed under reduced pressure. The residue was recrystallized from CH₂Cl₂/hexane to give 2.36 g (60%) of 22 as a red powder: ¹H NMR (acetone- d_6) δ 8.82 (brs, 1H), 8.32 (d, 1H, J = 13.44 Hz), 7.94 (d, 1H, J = 13.35 Hz), 7.69–7.41 (m, 7H), 6.98-6.94 (m, 1H), 3.92 (s, 3H); IR (KBr) 1606, 1475, 1251 cm⁻¹. A solution of **22** (2.00 g, 6.75 mmol) in dry THF (20 mL) was added in a dropwise manner to a cooled (0 °C) suspension of LiAlH₄ (1.54 g, 40.5 mmol) in dry THF (40 mL) under N₂. The reaction mixture was heated at reflux for 1 h and then allowed to stand at room-temperature overnight. The resulting mixture was quenched with H₂O then 15% NaOH solution. Celite was added and the solution was filtered. The solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel (CH₂Cl₂/MeOH; 9:1) to give 1.00 g (55%) of the primary amine $\mathbf{23}^{23}$ as an oil: ¹H NMR (CDCl₃) δ 8.19 (brs, 1H), 7.59–7.58 (m, 2H), 7.49– 7.44 (m, 2H), 7.39-7.34 (m, 1H), 7.28-7.25 (m, 1H), 7.09 (d, 1H, J = 2.37 Hz), 6.88 (dd, 1H, J = 2.24, 8.75 Hz), 3.89 (s, 3H), 3.04 (brs, 4H); IR (KBr) 3397, 3347 cm⁻¹. Sodium cyanoborohydride (510 mg, 8.12 mmol) was added to a solution of primary amine 23 (700 mg, 2.63 mmol) and 37% aqueous CH₂O in MeCN (10 mL) at room temperature. The resulting mixture was adjusted to pH 5 with HOAc and was allowed to stir at room-temperature overnight. A 15% solution of NaOH was added to neutralize the mixture and the mixture was extracted with CH₂Cl₂. The combined organic portion was washed with saturated NaHCO₃ solution and brine. The organic portion was dried (MgSO₄) and solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel (CH₂Cl₂/MeOH; 9:1) to give 195 mg (25%) of **10** (free base) as a white powder: ¹H NMR (CDCl₃) δ 8.05 (brs, 1H), 7.56–7.53 (m, 2H), 7.49–7.44 (m, 2H), 7.39– 7.34 (m, 1H), 7.29–7.25 (m, 1H), 7.11 (d, 1H, J = 2.25 Hz), 6.87 (dd, 1H, J = 2.52, 8.73 Hz), 3.89 (s, 3H), 3.13–3.08 (m, 2H), 2.72–2.66 (m, 2H), 2.39 (s, 6H). Although the HCl salt has been previously reported,²³ difficulties in its purification led to isolation of the product as its oxalate salt: mp 187– 188 °C after recrystallization from acetone. Anal. (C₁₉H₂₂N₂O· C₂H₂O₄) C, H, N.

5-Methoxy-1-(2-propyl)-N,N-dimethyltryptamine Maleate (15). A mixture of 5-methoxy-N,N-dimethyltryptamine (11; free base) (500 mg, 2.29 mmol) and 60% NaH (100 mg, 2.52 mmol) was heated at 100 °C under N₂ until evolution of H₂ gas ceased. The resultant mass was dissolved in anhydrous DMF (3 mL) and 2-bromopropane (0.25 mL, 2.84 mmol) was added to the solution at 0 °C. The reaction mixture was allowed to stir at room temperature for 3 h. Brine was added and the reaction mixture was extracted with CH₂Cl₂. The organic portion was dried (MgSO₄) and the solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel (CH₂Cl₂/MeOH; 10:1) to give 294 mg of a bright yellow oil (49%): ¹H NMR (CDCl₃) δ 7.23 (d, 1H, J =8.94 Hz), 7.04 (d, 1H, J = 2.46 Hz), 7.01 (s, 1H), 6.86 (dd, 1H, J = 2.46, 8.88 Hz), 4.59-4.54 (m, 1H), 3.86 (s, 3H), 2.95-2.89 (m, 2H), 2.66-2.61 (m, 2H), 2.36 (s, 6H), 1.48 (d, 6H, J = 6.72Hz). The maleate salt was prepared and recrystallized from an acetone/Et2O mixture: mp 101-102 °C. Anal. (C16H24N2O. C₄H₄O₄) C, H, N.

¹H NMR data for compounds **13** and **14** are as follows: **13** (CDCl₃) δ 7.22 (d, 1H, J = 9.0 Hz), 7.06 (d, 1H, J = 2.5 Hz), 6.95 (s, 1H), 6.88 (dd, 1H, J = 2.5, 6.0 Hz), 4.10 (q, 2H, J = 7.5 Hz), 3.88 (s, 3H), 3.01–2.97 (m, 2H), 2.76–2.73 (m, 2H), 2.45 (s, 6H), 1.44 (t, 3H, J = 7.5 Hz); **14** (CDCl₃) δ 7.19 (d, 1H, J = 8.85 Hz), 7.04 (d, 1H, J = 2.37 Hz), 6.90 (s, 1H), 6.87–6.83 (m, 1H), 3.98 (t, 2 H, J = 7.08 Hz), 3.86 (s, 3H), 2.93–2.87 (m, 2H), 2.64–2.59 (m, 2H), 2.35 (s, 6H), 1.82 (q, 3H, J = 7.2 Hz), 0.91 (t, 2H, J = 7.4 Hz).

6,7,8,9-Tetrahydro-2-methoxy-10-(N,N-dimethylaminoethyl)pyrido[1,2-a]indole Oxalate (16). A solution of 1.0 M borane/THF (2 mL, 2 mmol) was added in a dropwise manner to ice-bath cooled **21** (290 mg, 1.01 mmol) under N₂. The reaction mixture was allowed to stir at room temperature for 2 h. Acetone (3 mL) was added, and the reaction mixture was heated at reflux for 1 h to quench the unreacted borane reagent. The solvent was removed under reduced pressure. A 15% solution of NaOH was added and the mixture was extracted with CH₂Cl₂, and the CH₂Cl₂ portion was washed with H₂O, then brine. Solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel (hexane/EtOAc; 4:1) to give 207 mg (75%) of a light yellow oil: ¹H NMR (DMSO- d_6) δ 7.34 (d, 1 H, J = 8.85 Hz), 7.21 (s, 1H), 7.11 (s, 1H), 4.08 (t, 2H, J = 6.65 Hz), 3.79 (s, 3H), 3.40-3.35 (m, 2H), 3.30-3.25 (m, 2H), 3.06-3.01 (m, 2H), 2.83 (s, 6H), 1.76-1.69 (m, 2H), 1.40-1.31 (m, 2H). A small portion was converted to its oxalate salt: mp 114-115 °C. Anal. (C₁₇H₂₄N₂O·1.15C₂H₂O₄·H₂O) C, H, N.

4-(Dimethylaminomethyl)-6-methoxy-1,2,3,4-tetrahydrocarbazole Oxalate (17). Sodium metal (1.0 g) was added portionwise over a 30-min period to a stirred solution of 4-(dimethylaminomethyl)-9-benzyl-6-methoxy-1,2,3,4-tetrahydrocarbazole hydrochloride¹⁹ (4.0 g, 0.01 mol) in liquid NH₃ (300 mL). NH₄Cl (3.0 g) was added until the blue color of the mixture dissipated. The NH₃ was evaporated, H₂O (50 mL) was added, and the mixture was extracted with CH₂Cl₂ (3 × 50 mL). The combined organic portion was washed with H₂O (50 mL), brine (50 mL), dried (MgSO₄) and evaporated to give an oil. The oil was purified by column chromatography (CHCl₃/ MeOH; 9:1) and converted to an oxalate salt. The oxalate salt was recrystallized from anhydrous Et₂O/absolute EtOH to give 1.8 g (37%) of the desired target as a white powder: mp 224– 226 °C; ¹H NMR (CDCl₃, free base) δ 8.10 (s, 1H, NH), 7.20 (t, 1H, ArH), 6.90 (d, 1H, ArH), 6.70 (dd, 1H, ArH), 3.80 (s, 3H, OCH₃), 3.40 (t, 1H, CH), 3.15 (d, 1H, CH), 3.00 (t, 1H, CH), 2.82 (s, 6H, $2 \times$ CH₃), 2.63–2.73 (m, 2H, CH₂), 2.33 (m, 1H, CH), 1.8–2.0 (m, 3H, CH₂-CH). Anal. (C₁₆H₂₂N₂O·C₂H₂O₄) C, H, N.

1-Benzenesulfonyl-5-methoxy-N,N-dimethyltryptamine Oxalate (18). A mixture of 5-methoxy-N,N-dimethyltryptamine (11; free base) (4.35 g, 19.93 mmol) and 60% NaH (0.87 g, 21.75 mmol) was heated at 100 °C under N₂ until evolution of H₂ gas ceased. The resultant mass was dissolved in anhydrous DMF (21 mL) and benzenesulfonyl chloride (2.8 mL, 21.94 mmol) was added in a dropwise manner at 0 °C. The reaction mixture was allowed to stir at roomtemperature overnight. Saturated NaHCO3 solution was added and the mixture was extracted with CH₂Cl₂. The organic portion was dried (MgSO₄) and the solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel (CH₂Cl₂/MeOH; 9:1) to give 4.39 g of an oil (61%): ¹H NMR (CDCl₃) & 7.89-7.87 (m, 1H), 7.83 (d, 2H, J = 8.0 Hz), 7.51 (t, 1H, J = 7.8 Hz), 7.34 (s, 1H), 6.93-6.92 (m, 2H), 3.82 (s, 3H), 2.80 (t, 2H, J = 7.8 Hz), 2.59 (t, 2H, J = 7.8 Hz), 2.33 (s, 6H); IR (CHCl₃) 1357, 1115 cm⁻¹. The oxalate salt was prepared and recrystallized from an acetone/ Et₂O mixture: mp 224-226 °C. Anal. (C₁₉H₂₂N₂O₃S·C₂H₂O₄) C, H, N.

1-Benzenesulfonyl-5-methoxy-2-n-propyl-N,N-dimethyltryptamine Oxalate (19). A 2.5 M solution of nBuLi (1.4 mL, 3.5 mmol) was added in a dropwise manner to a stirred solution of 18 (free base) (1.00 g, 2.79 mmol) in DME (4 mL) at -10 °C under N₂. The resulting solution was allowed to stir for an additional 10 min at -10 °C, and then *n*PrI (0.35 mL, 3.59 mmol) was added. The reaction mixture was allowed to stir for 1 h at -10 °C. Saturated NaHCO₃ solution was added and the reaction mixture was extracted with CH₂Cl₂. The organic portion was washed with brine and dried (MgSO₄); the solvent was removed under reduced pressure and the residue was purified by flash chromatography on silica gel (CH₂Cl₂/ MeOH; 30:1) to give 0.19 g (17%) of a bright yellow oil: ¹H NMR (CDCl₃) δ 8.06 (d, 1H, J = 8.79 Hz), 7.62 (d, 2H, J =8.22 Hz), 7.51-7.46 (m, 1H), 7.38-7.33 (m, 2H), 6.95 (brs, 1H), 6.89-6.85 (m, 1H), 3.85 (s, 3H), 2.96-2.89 (m, 4H), 2.63-2.57 (m, 2H), 2.48 (s, 6H), 1.73 (q, 2H, J = 7.51 Hz), 1.00 (t, 3H, J= 7.51 Hz); IR (CHCl₃) 1355 cm⁻¹. The oxalate salt was prepared and recrystallized from acetone: mp 175-176 °C. Anal. (C₂₂H₂₈N₂O₃S·C₂H₂O₄) C, H, N.

6,7,8,9-Tetrahydro-2-methoxy-10-(N,N-dimethylaminoethyl)pyrido[1,2-a]indol-9-one Oxalate (21). A mixture of 5-methoxy-*N*,*N*-dimethyltryptamine (**11**; free base) (2.00 g, 9.17 mmol) and 60% NaH (0.41 g, 10.1 mmol) was heated at 100 °C under N₂ until evolution of H₂ gas ceased. The resultant mass was dissolved in anhydrous DMF (25 mL) and anhydrous γ -butyrolactone (1.4 mL, 18.2 mmol) was added in a dropwise manner at room temperature. The reaction mixture was heated at reflux for 20 h, cooled to 0 °C, and acidified by the addition of a saturated ethereal solution of HCl. Additional Et₂O was added to the resulting suspension and the supernatant was decanted. The residue was dissolved in PPE (52.5 mL) and CHCl₃ (100 mL) and the reaction mixture was heated at reflux for 3 h under N_2 . The resulting mixture was neutralized by the addition of 15% NaOH solution, at ice-bath temperature, and extracted with CH₂Cl₂. The organic portion was dried (MgSO₄₎ and solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel (CH₂Cl₂/MeOH; 20:1) to give 0.52 g (20%) of 21 (free base) as a yellow oil: ¹H NMR (DMSO- d_6) $\bar{\delta}$ 7.35 (d, 1H, J = 8.79 Hz), 7.18 (s, 1H), 6.88 (d, 1H, J = 8.85 Hz), 4.06 (t, 2H, J = 6.60 Hz), 3.80 (s, 3H), 3.42–3.36 (m, 2H), 3.17–3.12 (m, 2H), 2.85 (s, 6H), 2.66-2.62 (m, 2H); IR (CHCl₃) 1648 cm⁻¹. A small sample was converted to the oxalate salt: mp 191-192 °C dec. Anal. $(C_{19}H_{24}N_2O_6 \cdot 1.6C_2H_2O_4)$ C, H, N.

5-HT₆ Radioligand Binding Assay. The binding assay employed human 5-HT₆ receptors stably transfected to HEK 293 human embryonic kidney cells with [³H]lysergic acid diethylamide (70 Ci/mmol; DuPont NEN) as radioligand. All

assays were conducted in triplicate using polypropylene 1 mL/ well plates (Anachemia). The radioligand was diluted in incubation buffer in borosilicate glass vials and protected from light. Competing agents (1 mM stock solutions) were dissolved in DMSO or saline and stored at -20 °C in 1.2-mL polypropylene tubes (ElKay). Dilutions of compounds were made using incubation buffer in 96-well polypropylene plates and mixed by multichannel pipetting >25 times. Serial dilutions (1 in 4) started at a final concentration of 10000 nM. Final concentrations >10000 nM were individually prepared from the 1 mM $\,$ stock solution. Nonspecific binding was defined by 100 μ M serotonin creatinine sulfate (Research Biochemicals) prepared fresh in incubation buffer at the time of each determination and protected from light. Reactions volumes were as follows: 200 μ L of incubation buffer (50 mM Tris, 0.5 mM EDTA, 10 mM MgCl_2), pH 7.4 at 22 °C, 100 μL of test agent or serotonin (100 μ M) or buffer (for total binding), 100 μ L of [³H]lysergic acid diethylamide (2 nM final concentration), and 100 μ L of membrane preparation (15 μ g of protein). The incubation was initiated by the addition of membrane homogenate and the plates were vortexed (Baxter S/P multitube mixer). The plates were incubated, with protection from light, by shaking (Gyrotop water bath/shaker model G76, speed 2) at 37 °C for 60 min. The binding reaction was stopped by filtration. The samples were filtered under vacuum over 96-well glass fiber filters (Packard Unifilter GF/B), presoaked in 0.3% PEI in 50 mM Tris buffer (4 °C, pH 7.4) for at least 1 h, and then washed six times with 1 mL of cold 50 mM Tris buffer (pH 7.4) using the Packard Filtermate 196 harvester. The Unifilter plates were dried overnight in a 37 °C dry incubator. The Unifilter bottoms were sealed and 35 μ L of Packard MicroScint-0 was added. The plates were allowed to equilibrate for 1 h and were then sealed using a Packard TopSeal P with the Packard Plate Micromate 496. Plates were counted in a Packard TopCount 4.1 by liquid scintillation spectrometry. Each well was counted for 3 min. The test agents were initially assayed at 1000 and 100 nM. If the compound was active (defined as causing at least 80% inhibition of [³H]lysergic acid diethylamide binding at 1000 nM), it was further tested for determination of a K_i value. The range of concentrations was chosen such that the middle concentration would produce approximately 50% inhibition.

Receptor Screen. Assays for the following receptors were performed by the NIMH Psychoactive Drug Screening Program: (1) serotonin receptors: h5-HT_{1A}, h5-HT_{1B}, h5-HT_{1D}, h5-HT_{1E}, r5-HT_{2A}, r5-HT_{2C}, h5-HT₆, h5-HT₇; (2) dopamine receptors: hD₁, rD₂, rD₃, rD₄, hD₅; (3) muscarinic acetylcholine receptors: hm₁, hm₂, hm₃, hm₄, hm₅; (4) nicotinic acetylcholine receptors: $\alpha 2/\beta 2$, $\alpha 2/\beta 4$, $\alpha 3/\beta 2$, $\alpha 3/\beta 4$, $\alpha 4/\beta 2$, $\alpha 4/\beta 2$, $\alpha 4/\beta 4$; (5) vasopressin receptors: hV1, hV2, hV3; (6) opiate receptors: $h\mu$, $h\delta$, $r\kappa$; (7) transporters: hSERT, hNET, rDAT; (8) rNMDA; (9) rPCP; and (10) rH1-histamine. Detailed on-line protocols for the binding assays are described at: http://meds20785. cwru.edu/myweb/protocol.htm. For screening purposes, the ability of 10 μ M of each compound (dissolved in 10% DMSO) was incubated with the appropriate receptor preparation and percent inhibition determined for duplicate determinations each performed in duplicate. Where > 50% inhibition of specific binding was measured, Ki determinations were then measured by competition binding assays in which concentrations from 1 to 100000 nM were incubated in duplicate. For each K_i value the data represent the mean \pm SD of computer-derived estimates for N = 4 separate determinations. h5-HT₆ receptor assays were performed exactly as previously described.^{3,}

Adenylate Cyclase Assay. $h5-HT_6$ receptors stably expressed in HEK-293 cells were grown in 24-well plates to nearconfluency and 18 h prior to assay the medium was replaced with DMEM containing dialyzed 10% fetal calf serum. For the assay, the medium was aspirated and replaced with fresh DMEM without serum and incubated with various concentrations of test agent in a total volume of 0.5 mL for 15 min. The assay was terminated by aspiration and the addition of 10% trichloroacetic acid (TCA). The TCA extract was used for cAMP determinations. Data represent the mean of N = 4 separate determinations.

Acknowledgment. Supported in part by MH57635 and MH01366 (B.L.R.) and the NIMH Psychoactive Drug Screening Program.

References

- Ruat, M.; Traiffort, E.; Arrang, J.-M.; Tardivel-Lacombe, J.; Diaz, J.; Leurs, R.; Schwartz, J.-C. A novel rat serotonin (5-HT₆) receptor: molecular cloning, localization, and stimulation of cAMP accumulation. *Biochim. Biophys. Acta* **1993**, *193*, 268– 276.
- (2) Sleight, A. J.; Boess, F. G.; Bos, M.; Levet-Trafit, B.; Bourson, A. The 5-hydroxytryptamine₆ receptor: localization and function. *Exp. Opin. Ther. Patents* **1998**, *8*, 1217–1224.
- (3) Kohen, R.; Metcalf, M. A.; Khan, N.; Druck, T.; Huebner, K.; Lachowicz, J. E.; Meltzer, H. Y.; Sibley, D. R.; Roth, B. L.; Hamblin, M. W. Cloning, characterization and chromosomal localization of a human 5-HT₆ serotonin receptor. *J. Neurochem.* **1996**, *66*, 47–56.
- (4) Roth, B. L.; Craigo, S. C.; Choudhary, M. S.; Uluer, A.; Monsma, F. J.; Shen, Y.; Meltzer, H. Y.; Sibley, D. R. Binding of typical and atypical antipsychotic agents to 5-hydroxytryptamine-6 and 5-hydroxytryptamine-7 receptors. *J. Pharmacol. Exp. Ther.* **1994**, *268*, 1403–1410.
- (5) Glatt, C. E.; Snowman, A.; Sibley, D. R.; Snyder, S. H. Clozapine: selective labeling of sites resembling 5-HT₆ serotonin receptors may reflect psychoactive profile. *Mol. Med.* **1995**, *1*, 398–406.
- (6) Bourson, A.; Borroni, E.; Austin, R. H.; Monsma, F. J.; Sleight, A. J. Determination of the role of 5-ht₆ receptors in the rat brain: A study using antisense oligonucleotides. *J. Pharmacol. Exp. Ther.* **1995**, *274*, 173–180.
- (7) Sleight, A. J.; Monsma, F. J.; Borroni, E.; Austin, R. H.; Bourson, A. Effects of altered 5-ht₆ expression in the rat: functional studies using antisense oligonucleotides. *Behav. Brain Res.* **1996**, *73*, 245–248.
- (8) Hamon, M.; Doucet, E.; Lefevre, K.; Miquel, M.-C.; Lanfumey, L.; Insausti, R.; Frechilla, D.; Del Rio, J.; Verge, D. Antibodies and antisense oligonucleotide for probing the distribution and putative functions of central 5-HT₆ receptors. *Neuropsychopharmacology* **1999**, *21*, 68S–76S.
- (9) Yoshioka, M.; Matsumoto, M.; Togashi, H.; Moti, K.; Saito, H. Central distribution and function of 5-HT₆ receptor subtype in the rat brain. *Life Sci.* **1998**, *62*, 1473–1477.
- (10) Gerard, C.; Martres, M.-P.; Lefevre, K.; Miquel. M.-C.; Verge, D.; Lanfumey, L.; Doucet, E.; Hamon, M.; El Mestikawy, S. Immuno-localization of serotonin 5-HT₆ receptor-like material in the rat central nervous system. *Brain Res.* **1997**, *746*, 207– 219.
- (11) Grimaldi, B.; Bonnin, A.; Fillion, M.-P.; Ruat, M.; Traiffort, E.; Fillion, G. Characterization of 5-ht₆ receptor mRNA in the rat brain during ontogenetic development. *Naunyn-Schmeideberg's Arch. Pharmacol.* **1998**, *357*, 393–400.
- Arch. Pharmacol. 1998, 357, 393-400.
 (12) (a) Sleight, A. J.; Boess, F. G.; Bos, M.; Levet-Trafit, B.; Riemer, C.; Bourson, A. Characterization of Ro 04-6790 and Ro 63-0563: potent and selective antagonists at human 5-HT₆ receptors. Br. J. Pharmacol. 1998, 124, 556-562. (b) Boess, F. G.; Riemer, C.; Bos, M.; Bentley, J.; Bourson, A.; Sleight, A. J. The 5-hydroxytryptamine₆ receptor-selective radioligand [³H]Ro 63-0563 labels 5-hydroxytryptamine receptor binding sites in rat and porcine striatum. Mol. Pharmacol. 1998, 54, 577-583.
- (13) Bromidge, S. M.; Brown, A. M.; Clarke, S. E.; Dodgson, K.; Gager, T.; Grassam, H. L.; Jeffrey, P. M.; Joiner, G. F.; King, F. D.; Middlemeiss, D. N.; Moss, S. F.; Newan, H.; Riley, G.; Routledge, C.; Wyman, P. 5-Chloro-N-(4-methoxy-3-piperazin-1-ylphenyl)-3-methyl-2-benzothiophenesulfonamide (SB-271046): A potent, selective, and orally bioavailable 5-HT₆ receptor antagonist. J. Med. Chem. 1999, 42, 202–205.
 (14) Monsma, F. J.; Shey, Y.; Ward, R. P.; Hamblin, M. W.; Sibley,
- (14) Monsma, F. J.; Shey, Y.; Ward, R. P.; Hamblin. M. W.; Sibley, D. R. Cloning and expression of a novel serotonin receptor with high affinity for tricyclic psychotropic drugs. *Mol. Pharmacol.* **1993**, *43*, 320–327.
- (15) Glennon, R. A.; Dukat, M.; Westkaemper, R. B. Serotonin receptors and ligands. In *Psychopharmacology*, Watson, S. J., Ed.; Lippencott-Raven: New York, 1998; CD-ROM version.
- (16) Glennon, R. A.; Bondarev, M.; Roth, B. 5-HT₆ serotonin receptor binding of indolealkylamines: A preliminary structure-affinity investigation. *Med. Chem. Res.* **1999**, *9*, 108–117.
- (17) Shaw, E. The synthesis of tryptamines related to serotonin. J. Am. Chem. Soc. 1955, 77, 4319–4324.
- (18) Polyphosphate ester (PPE) in Reagents for Organic Synthesis, Volume 1; Fieser, L. F., Fieser, M., Eds.; John Wiley and Sons: New York, 1967; pp 892–894.

- (19) Alexander, E.; Mooradian, A. 4-Aminomethyl-9-benzyl-1,2,3,4tetrahydrocarbazoles. United States Patent 3,939,177, Feb 17, 1976.
- (20) Gozaln, H. 5-HT₃ receptors. In Serotonin Receptors and their
- (20) Gozaln, H. 5-HT₃ receptors. In *Serotonin Receptors and then Ligands*; Olivier, B., van Wijngaarden, I., Soudijn, W., Eds.; Elsevier: Amsterdam, 1997; pp 221-258.
 (21) King, F. D.; Brown, A. M.; Gaster, L. M.; Kaumann, A. J.; Medhurst, A. D.; Parker, S. G.; Parson, A. A.; Patch, T. L.; Raval, P. (±)3-Amino-6-carboxamido-1,2,3,4-tetrahydrocarbazole: A conformationally restricted analogue of 5-carboxamidotryptamine with celectivity for the serotonin 5-HT_{in} recentor. *J. Med. Chem.* with selectivity for the serotonin 5-HT_{1D} receptor. J. Med. Chem. 1993, *36*, 1918–1919.
- (22) Glennon, R. A.; Hong, S.-S.; Bondarev, M.; Law, H.; Dukat, M.; Rakhit, S.; Power, P.; Fan, E.; Kinneau, D.; Kamboj, R.; Teitler, M.; Herrick-Davis, K.; Smith. C. Binding of O-alkyl derivatives of serotonin at human 5-HT_{1D} β receptors. J. Med. Chem. **1996**, 39, 314-322.
- (23) Julia, M.; Melamed, R.; Gombert, R. Research in the indole series. XVI. 2-Aryltryptamines and homologous amines. Ann. Inst. Pasteur 1965, 109, 343-362; Chem. Abstr. 1966, 64, 677.
- (24) Benington, F.; Morin, R. D.; Clark, L. C. Jr. Synthesis of O- and N-methylated derivatives of 5-hydroxytryptamine. J. Org. Chem. 1958, 23, 1977-1979.
- (25) Chapman, N. B.; Clarke, K.; Hughes, H. Synthesis of some 5-substituted 2-methyltryptamines and their N-mono- and dialkyl derivatives. J. Chem. Soc. 1965, 1424-1428.
- (26)Houlihan, W. J.; Parrino, V. A.; Uike, Y. Lithiation of N-(2alkylphenyl)alkanamides and related compounds. Madelung indole synthesis. J. Org. Chem. 1981, 46, 4511-4515.

JM990550B